时间:2024-04-15 12:35:20
[1] |
Deaton J D,Grandhi R V.A survey of structural and multidisciplinary continuum topology optimization:post 2000[J].Structural and Multidisciplinary Optimization,2014,49(1):1-38. |
[2] |
Sigmund O,Maute K.Topology optimization approaches[J].Structural and Multidisciplinary Optimization,2013,48(6):1031-1055. |
[3] |
Bendsoe M P,Sigmund O.Topology Optimization:Theory,Methods,and Applications[M].Berlin:Sprin-ger Science & Business Media,2003. |
[4] |
王选,祝雪峰,胡平,等.基于NURBS插值的三维渐进结构优化方法[J].计算力学学报,2016,33(4):536-542.(WANG Xuan,ZHU Xue-feng,HU Ping,et al.Bi-directional evolutionary method using NURBS interpolation for optimal design of 3D continuum structures[J].Chinese Journal of Computational Mechanics, 2016,33(4):536-542(in Chinese))
|
[5] |
仝立勇,骆泉添.用拓扑优化设计多体分比蜂窝状结构[J].计算力学学报,2016,33(4):516-521.(TONG Li-yong,LUO Quan-tian.Design of cellular structures with multi-volume fractions using topology optimization[J].Chinese Journal of Computational Mechanics,2016,33(4):516-521.(in Chinese))
|
[6] |
周海涛,张大可,杨毅超,等.基于虚拟材料的T-B梁拓扑优化ESO方法[J].计算力学学报,2017,34(2):143-147.(ZHOU Hai-tao,ZHANG Da-ke,YANG Yi-chao,et al.Study of ESO on Tie-beam problem using virtual material[J].Chinese Journal of Computational Mechanics,2017,34(2):143-147.(in Chinese))
|
[7] |
隋允康,叶红玲,彭细荣.应力约束全局化策略下的连续体结构拓扑优化[J].力学学报,2006,38(3):364-370.(SUI Yun-kang,YE Hong-ling,PENG Xi-rong.Topological optimization of continuum structure under the strategy of globalization of stress constraints[J].Chinese Journal of Theoretical and Applied Mechanics,2006,38(3):364-370.(in Chinese))
|
[8] |
荣见华,葛森,邓果,等.基于位移和应力灵敏度的结构拓扑优化设计[J].力学学报,2009,41(4):518-529.(RONG Jian-hua,GE Sen,DENG Guo,et al.Structural topological optimization based on displacement and stress sensitivity analysis[J].Chinese Journal of Theoretical and Applied Mechanics,2009,41(4):518-529.(in Chinese))
|
[9] |
Le C,Norato J,Bruns T,et al.Stress-based topology optimization for continua[J].Structural and Multidisciplinary Optimization,2010,41(4):605-620. |
[10] |
Guo X,Zhang W S,Wang M Y,et al.Stress-related topology optimization via level set approach[J].Computer Methods in Applied Mechanics and Engineering,2011,200(47-48):3439-3452. |
[11] |
Wang M Y,Li L.Shape equilibrium constraint:a strategy for stress-constrained structural topology optimization[J].Structural and Multidisciplinary Optimization,2013,47(3):335-352. |
[12] |
Cai S Y,Zhang W H,Zhu J H,et al.Stress constrained shape and topology optimization with fixed mesh:a B-spline finite cell method combined with level set function[J].Computer Methods in Applied Mecha-nics and Engineering,2014,278:361-387. |
[13] |
Hughes T J R,Cottrell J A,Bazilevs Y.Isogeometric analysis:CAD,finite elements,NURBS,exact geometry and mesh refinement[J].Computer Methods in Applied Mechanics and Engineering,2005,194(39):4135-4195. |
[14] |
Cottrell J A,Hughes T J R,Bazilevs Y.Isogeometric Analysis:Toward Integration of CAD and FEA[M].New York:John Wiley & Sons,2009. |
[15] |
Nguyen V P,Anitescu C,Bordas S P A,et al.Isogeometric analysis:an overview and computer implementation aspects[J].Mathematics and Computers in Simulation,2015,117:89-116. |
[16] |
Jahangiry H A,Tavakkoli S M.An isogeometrical approach to structural level set topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2017,319:240-257. |
[17] |
Svanberg K.The method of moving asymptotes-a new method for structural optimization[J].International Journal for Numerical Methods in Engine-ering,1987,24(2):359-373. |
[18] |
Yang D X,Yang P X.Numerical instabilities and convergence control for convex approximation methods[J].Nonlinear Dynamics,2010,61(4):605-622. |
[19] |
Jeong S H,Yoon G H,Takezawa A,et al.Development of a novel phase-field method for local stress-based shape and topology optimization[J].Compu-ters & Structures,2014,132:84-98. |